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ABSTRACT

Rowland, James Richard, Ph.D., Purdue University, June, 1966.

On the Asymptotic Stability of Feedback Control Systems Containing

a2 Single Time-Varying Element. Major Professor: Zenonas V. Rekasius.

Three contributions are presented in this thesis. The first
contribution is showing that the Popov Criterion, a powerful stability
result developed for feedback systems having a single time-invariant
nonlinearity, does not apply without modification when the nonlinear
characteristic varies with time. The damped Mathieu equation provides
a counter-example for the desired purpose. 1

The second contribution is closely related to the first. A
frequency domain criterion is developed to guarantee global asymptotic
stability for systems containing a time-varying nonlinear element in
the loop. The criterion, known as the Improved Criterion, takes
advantage of additional information related to the rate at which the
nonlinear characteristic varies with time and represents a considerable
improvement over previous criteria.

The third contribution is the Sinusoidal Criterion, which
guarantees asymptotic stability for linear feedback systems containing

a single sinusoidal gain. The class of systems to which the Sinusoidal

Criterion applies is not as large as for the Improved Criterion.
However, when both criteria are applied to systems having a single

sinusoidal gain, the Sinusoidal Criterion yields a much wider stability
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sector.

Both criteria developed in this thesis are independent of the
order of the system. The width of the stability sector for each
criterion depends upon the transfer function of the linear plant
and additional information about the time rate at which the separate
element varies. Examples are provided to illustrate the particular
effectiveness of each criterion.

Evaluation of these results are discussed from the point of view
of their importance to the field of stability theory and the implica-

tions for further research.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The analysis and design of automatic control systems frequently
requires an investigation of system stability. When the system dynamics
are described by a set of linear differential equations with constant
coefficients, then the familiar techniques of linear servomechanisms
theory, such as root locus and the Nyquist Criterion, may be success-
fully applied to determine system stability. Even when the equations are
nonlinear, some criteria which guarantee stability, such as the Popov
Criterion, may often provide useful information. However, when the
system contains a time-varying element, the problem becomes consider-
ably more difficult and the above techniques are not directly applicable.

There are numerous physical systems which contain nonstationary
elements. These systems may have time-varying parameters because of the
action of a process outside the system itself [1,2]. Wide ranges of air
density around a rocket or space vehicle may cause time variations in
certain parameters of the systems. The resistance of a carbon micro-
phone and the capacitance of a condenser microphone are time-varying
parameters. In certain mechanical systems the effective mass or stiff-
ness of a component may vary with time. A pendulum whose pivot point

is caused to oscillate in a vertical position is described by the




Mathieu equation [3], which has a time-varying gain. The design of opti-
mal control systems sometimes requires a controller which possesses time
varying parameters.

The increased use of more complicated systems in space and missile
applications has accelerated the demand for new and improved stability
criteria. However, only meager results for time-varying systems are
presently available. The purpose of this thesis is to develop new
stability criteria for feedback control systems containing a single time-

varying element.

1.2 Notation

Vector-matrix notation is used consistently throughout the thesis.
Some small English letters, such as b, ¢, and x, are used to represent
n-dimensional column vectors. The capital English letter A designates
an n by n constant metrix, and the letter K is reserved to represent a
scalar gain constant. The letters V and W denote scalar functions.
Other scalar constants are represented by small Greek letters, such as
a, B, and y. The letters f, g, and h are used as real-valued continuous
functions. The transpose of a vector or a matrix is shown by a capital
T superscript, such as xT or A?. The matrix inequality P > O implies
that the associated quadratic form xth is non-negative for all x. The
statement that the pair (A,b) is completely controllable means the vectors
b, Ab, ..., A are linearly independent. That the pair (A, cT) is
completely observable means the vectors c, A?c, ceey (Ap-
linearly independent. Special notation may be introduced at times to
conform with popular usage in the literature, but new symbols are care-

fully defined at that particular point in the thesis.

—
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1.3 Definitions of Stability

It is important to define the precise meaning of the stability to
which later criteria refer. Consider the system described by the
vector differential equation

X = h(x, t) (1.1)
where x is an n-vector representing the state of the system and h(x, t)
is a real-valued vector function which is continuous in both x and t.

Assume that the equilibrium state Xg being investigated is located

at the origin in the state space and that
h(0, t) =0 forall t >t . (1.2)
Moreover, let the norm of x be represented by || x || .

Definition 1:

If for any given € > O there exists another positive real number
5(e, to) such that for every initial state satisfying the inequality
=t ) []<®
the trajectory satisfies the inequality
Hx(e) [[<e
for all t >t _, then the equilibrium state x = 0 is said to be stable
in the sense of Liapunov.

Definition 2:

If the origin of the state space is stable and, in addition, every
trajectory starting sufficiently close to the equilibrium state x, = )
converges to x_ as time + « , then the system (1.1)-(1.2) is said to
be asymptotically stable.

If the region of asymptotic stability includes the entire state

space, then the system is globally asymptotically stable. If the value




of & in Definitions 1 and 2 is independent of to’ then the equilibrium
stafe of the system (1.1)-(1.2) is, respectively, uniformly stable or
uniformly asymptotically stablé.

An inherent deficiency of the above definitions is that stability
in the Liapunov sense is a local concept. This means that one may be
able to insure stability for small initial conditions, while large
initial conditions result in an unstable behavior., However, the criteria

obtained in later chapters guarantee global asymptotic stability.

1.4 Liapunov's 8tability Theorems

In 1892 Liapunov [4] developed his theory of the stability of
dynamic systems. He investigated the stability problem by two distinct
methods. The first method, which has since met with very little success,
required an explicit solution of the differential equations describing
the system behavior. The second method was based on the physical
reasoning that a dissipative system perturbed from its equilibrium
state will always return to it. To facilitate this theory, Lispunov
introduced an energy-like function which, together with its time
derivative, must satisfy certain requirements to predict either system
stability or instability. This technique, which does not require the
explicit solution of the system equations, has become known as the
"Direct" or "Second Method" of Liapunov.

Thé following theorems provide a basis for the development of the

stability criteria in later chapters.
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Theorem 1:

If there exists a real-valued continuous function V(x, t) with
the following properties:
a). V(x, t) has continucus first partial derivatives
b). V(x, t) is positive definite, i.e. V(x, t) > Wl(x) > 0 for
all x >0 and all t >0, and V(0, t) = 0.*

c). lim V(x, t) = » for all Xy -

X. -+

where Xs for i =1, ..., n represents the components of the
n-vector x.
d). there exists some region including the origin in the state
space in which V(x, t) <0,
then the equilibrium state x_ =0 of the system (1.1)-(1.2) is stable
in the sense of Liapunov.

The theorem for asymptotic stsbility is somewhat more restrictive.

Theorem 2:

If there exists a real-valued continuous scalar function V(x, t)
vhich satisfies conditions (a), (b), and (c) of Theorem 1, and in some
region including the equilibrium state the condition V(x, t) < O is
satisfied, where 0 < W, (x) < V(x, t) < W,(x), and W (x) and'we(x) are
positive definite, then the equilibrium state x, = 0 of the system

(1.1)-(1.2) is asymptotically stable.

In this context, Wl(x) is a positive definite function dominated
by V(x, t).




If h(x, t) in (1.1) is not explicitly a function of time, then the
condition-i <:6 may-be feplaced by ﬁ < 0, vhere the curve % =0 is not a
trajectory of the system (1.1).

The theorems of Liapunov'result in sufficient, rather than necessary,
conditions for the stability of systems. For this reason, if a stability
theorem is not satisfied, one cannot conclude on this basis that the
system is unstable. Instability can, however, be proven if certain other
conditions specified in some of Liapunov's theorems for instability are
satisfied. Generally, the result obtained by Liapunov theory is quite
restrictive.

Liapunov theory has become more useful in recent years as researchers
have discovered improved techniques for selecting tentative Liapunov
functions and for constraining their time derivatives. It will be demon-
strated in later chapters of this theslis that these improved techniques

give & result which is less restrictive than before.

1.5 Applications of Liapunov Theory

Although Lispunov's theorems were available even before the turn of

the century, it hes only been within the last ten years that interest
has become accelerated. Earlier works include books and papers by Lur'e
(5], Malkin [6], Letov [7], and Zubov [8]. 1In particular, Lur'e
suggested using a Liapunov function composed of a quadratic term plus
an integral term. A summary of the early results is given in a book by
Hahn [9]. Kalman and Bertrem [10] and LeSalle and lefschetz [11] have
also produced works on Liapunov theory. In general, the results

pertain to systems of low order, which presents a serious handicap in
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view of modern work in the area.

The big impetus for current research using the Second Method ceme
as a result of a stability criterion developed by an entirely different
technique. This renewed interest in stability stems directly from a
breakthrough in the early part of this decade by the Rumanian scientist,
V.M. Popov. Using functional analysis, Popov [12, 13] developed a
frequency domain criterion to guarantee asymptotic stability for feed-
back systems containing a single time-invariant nonlinearity in a
finite gector (O, K). The Popov investigation reveals an entirely new
insight into the stebility problem; the width of the sector containing
the nonlinearity depends only upon the transfer function of the linear
plant. Moreover, the Popov result is independent of the order of the
system, which represents a remarkable advantage.

The relevance of the Popov Criterion to Liapunov theorists became
apparent shortly thereafter in a paper by Kalman [14]. Essentially,
the Popov Criterion pointed the direction in which stability work should
proceed. Kalman solved the indirect control problem, and then Rekasius
[15] followed by showing that Popov's result holds for the direct control
problem. More recently, Brockett [16, 17] has utilized Liapunov theory
to obtain even stronger stability results for the single time-invariant

nonlinearity system.

1.6 Derivation of the Popov Inequality Using Liapunov Theory

The Popov Criterion applies to a system described by

X = Ax + bf(o) (1.3)

g = ch (1.4)




where

0<o flo) < Ko® for o £ 0
, (1.5)
£(0) = 0 )

Choose as a tentative Liapunov function the form first proposed by

Lur'e [5].

g
V(x, 6) = x'Px + ;3f f(z) dz (1.6)
0

Evaluating its time derivative along the trajectories of the system
(1.3)-(1.5), one obtains
V(x, o) = xT[ATP + PAJx + (2bTP + BcTA) x f(o)
+Bcb (o) (1.7)

Constrain V(x, o) to be of the form

i(x, 0) = - [a% -7 £(0)F - £(0) [0 - § (o)1, (1.8)
The resulting équations are
T, T
AP + PA = - qq (1.9)
SbTP + BetA = 2 V5 & - cF (1.10)
y = -I% - ach (1.11)

In (1.9)-(1.11), q is a real n-vector. The existence of such a vector
satisfying (1.9)-(1.11) is guaranteed under certain conditions specified
in the following lemma due to Kalman [14].
Lemma:

If there exists a real non-negative number 7y, two real n-vectors
b and m, where m = ﬂATc + ¢, and an asymptotically stable matrix A
such that (A, b) is completely controllable, then a real n-vector q
satisfying (1.9)-(1.11) exists if and only if the inequality

7 - Re[mT(Jul - )L b] >0 (1.12)




holds for all real values of w.

The proof of another lemma which is analogous to Kalman's lemma is given
in Appendix I.

The existence of a real n-vector g means that the first term of
V(x, o) in (1.8) is negative semi-definite. Because of (1.5) the
second term is non-positive. If the condition of complete observability
is imposed, then V(x, o) in (1.6) is positive definite. Moreover,
¥(x, o) is not a trajectory of the system (1.3)-(1.5). Therefore, the
system is globally asymptotically stable if (1.12) holds for all real w.

Using the Laplace transformation, one can eliminate the vector x
from (1.3) and (1.4) to obtain

% TGr-a)to (1.13)

(0) =

Defining the open-loop transfer function of the linear part of the system

g
f,t

as the negative of the left hand side of (1.13), one may write

G(s) = - E_E%%z—];ﬁ = - cT(sI - A)‘l b (2.14)
0

x(0) =
Taking the derivative of (1.4) and then eliminating the vector x as

before, one has
L EGS )]
sG(s) = o R

Equations (1.14)-(1.15) with s = jw may be used in the inequality (1.12)

~cTA (sI - At b - (1.15)

x(0) =

to yield the Popov Criterion
L 4+ Re[(1 + JuB) G(Jw)] >0 (1.16)

which must hold for all real w and some real scalar constant B .
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If one defines

Y(jw) = w Im G(jw) (1.17)

X(jw) = Re G(ju) (1.18)

then (1.16) becomes V

2+ X(3u) - B ¥(ju) >0 (1.19)

Using the foregoing substitutions, Popov gave a geometrical interpreta-
tion for his criterion. He defined a modified frequency plene, shown
for a particular third order system in Fig. 1.1, with Y(jw) or wIm G(jw)
as ordinate and X(jw) or Re G(jw) as the abscissa. Thus, a straight
line with slope l/B could be drawn tangent to and completely above the
frequency plot. The intersection of this line with the negative Re G(jw)
axis ylelded a permissible value of -l/K. By moving this straight line
to various positions, one could obtain the largest value of K. Aizerman
and Gantmacher [18] described the Popov treatment and its implications
in a recent monograph.

Kalman also developed an "effective" procedure for calculating the
elements of the q vector and the P matrix once an acceptable value of K
and its corresponding B have been determined from the frequency domain
inequality. This procedure will be utilized in Chapter 3.

The significance of the Popov Criterion has been well expressed
by Lefschetz [19], who noted that Popov reduced the problem of searching
for the individual elements of an n by n matrix P to the much simpler

problem of searching for a single scalar constent B.

1.7 Organization of the Thesis

Following this introductory material, a counter-example is presented

in Chapter 2 to show that Popov's Criterion, which applies to a certain




f

wim G (jw)

— - Re G(Jw)—>

Fig. 1.1 Geometrical Interpretation of the Popov Criterion (1.16)
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class of stationary systems, needs modification for systems in which the
separate element varies with time,

Chapter 3 contains a frequency domain criterion which guarantees
global asymptotic stability for feedback systems containing a single
time-varying nonlinear element confined in a finite sector.

Another stability criterion is developed in Chapter 4 for feedback
systems in which the single time-varying element is linear and varies
sinusoidally with time.

Chapter 5 presents an evaluation of the results of the thesis with

recommendations for further study.
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CHAPTER 2

THE NONSTATIONARY PROBLEM AND POPOV'S CRITERION

2.1 Introduction

The aim of this chapter is to gain more insight into the stability
of feedback systems having a time-varying element. It is shown that
the Popov Criterion must be modified for the nonstationary case. One
method of modification is then developed in Chapter 3.

Before the development of Popov's Criterion, Aizerman [20] con-
jectured that if the feedback system obtained by replacing the non-
linearity by a linear gain K

1 1

stable for any K,, then the corresponding nonlinear system should also

, where 0 < K., <K, were asymptotically

be asymptoticelly stable. In other words, Aizerman contended that the
Routh-Hurwitz Criterion for linear time-invariant systems should be
applicable as well to nonlinear systems. That this conjecture was
untrue in general was demonstrated through several counter-examples by
Krasovskii [21], Pliss [22], Dewey and Jury [23], and others. The
Popov Criterion later provided new insight into the single nonlinearity
problem.

An interesting parallel exists between the foregoing and the poten-
tial application of the Popov Criterion to certain nonstationary systems.
Suppose one considers the case in which the nonlinearity in the Popov
problem is allowed to vary with time. Upon first observation, one might

be tempted to use Popov's result to predict system stability. In fact,
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at least one such attempt has actually been made [24]. The statement
of the nonstationary problem is given in the next section and then a
counter-example is presented in the following section to disprove the

above conjecture.

2.2 Statement of the Problem

Consider the following equations which describe a feedback system

with a single time-varying nonlinear element in the loop (Fig. 2.1).

% =Ax + b £(o, t) (2.1)

g = ch (2.2)
vwhere x is an n-vector which represents the state of the system, A is an
asymptotically stable n by n constant matrix, b and c are n-vectors, and
o and f(o, t) are the input and output, respectively, of the time-varying
nonlinear element. The output f(o, t) is a real-valued continuous scalar
function of o and t.

Furthermore, let (o, t) be confined to a sector (Fig. 2.2) in the
following manner.

0<g f(o, t) < Ko for o £0

(2.3)
£(0, t) =0 for all t > 0.

If the lower limit on f(o, t) in (2.3) had been some value other
than zero, then a "pole-shifting" technique [15] could be used to
rearrange (2.1)-(2.2) such that (2.3) holds.

The problem is to determine sufficient conditions which must be

satisfied by the linear plant in order for the system (2.1)-(2.3) to be

globally asymptotically stable.
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T X flg.t) -§ x = Ax +bf (0, t) =

Fig. 2.1 Schematic Diagram of the System (2.1) Through (2.3)

ot

llLllllllll»

Fig. 2.2 Input-Output Characteristic of the Time-Varying

Nonlinear Eiement {2.3)
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.
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2.3 A Counter-Example

The purpose of this section is to prove by means of a counter-example
[25] that the Popov result cannot be applied without modifications to
systems having a time-varying element in the loop. Specifically,.a paré
ticular class of systems described by the Mathieu equation with a small
damping term will be investigated. Referring to the literature, one can
eagily confirm that the members of a certain subclass of these systems
are indeed unstable. An actual analog computer simulation of a particular
member of this subclass will provide a specific example of instability.
(A) An arbitrary application of the Popov Criterion:

Consider the Mathieu equation with a small damping term.
X +2pk + (p-268cos2t)x=0 (2.4)
where £ >0, 0 >0, and y = n - 28 - € > 0. Both € and p are small and
positive.

One can meke the following identifications in applying the Popov

Criterion.
g = =X (2"5)
(o, t) =g— (1 - ?JE; cos 2 t)o (2.6?
K = 2(u-7) (2.7)
6(s) = —= (2.8)

s + 2ps + Y
Since p - 2¢ - ¥ = € > 0, the sector requirement (2.3) on f(o, t)
is satisfied. Moreover, since p and y in (2.8) are both pésitivé, thé

condition that A be asymptotically stable is also satisfied.
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Thus

K 2

2 2
i+un+a¢&qu=%+g::;;fi%? (2.9)

If one selects B = L the right hand side of {2.9) becomes

2p’

=

Z
+ 5 2

(r - ) + boPu

wi-

>0 (2.10)

Therefore, ah arbitfary application of the Popov Criterion to (2.4)
apparently (although incorrectly as shown below) guarantees global
asymptotic stability for aﬁy value of K such fhat O0<K<=,.
(B) Proof of instability:
The damping term in (2.&) can be eliminated by the substitution
x = e Pt Yy . (2.11)

The resulting equation is

F+(f-28cos2t)y=0 (2.12)

where

E=n-0° (2.13)

The stability of equation (2.12) is discussed in detail by Mclachlan
[3, 26]. Cunningham [1] also has a pertinent discussion. In particular,
one may refer to Figure 9.11, pege 273, in [1] to see that (2.12) is
unstable for certain values of { and & for vhiéh (¢ - 2¢) >o0.

The instability of (2.12) does not guarantee the instability of
(2.&) for all positive values of p. However, for sufficiently small values
of p; one would expect the boundaries between stable and unstable solu-
tions of (2.4) to be very near those exhibited by (2.12). Hence, if a

- PO R

- .2 fa #\ ;__ B T S N URE S
poinv (g5, 4 1§ Ccnosen i uae 1awerior o1

m—m moam e AT e e f -
ali ulp vau.l! 4TIVl W

and far awa& from the boundary, then for small values of p the solution

of (2.4) is also unstable.
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McLachlan [3] and Hayashi [27, 28] present the stability boundaries
which substantiate the foregoing conclusions (Fig. 2.3). In particular;
consider the system described by (2.4)-(2.8) in which o = 0.1, y = 0.17,
and € is arbitrarily small (e > 0). Combining (2.6) and (2.13), one
has ‘

§=%_p +7=£2{-+O.l6 (2-1,4')

The fact that 7 = p - 28 - ¢, together with (2.13), implies that
=28 +7-p°+e=28+0.16 (2.15)
if € is arbitrarily small. This means that in Fig. 2.3 the straight
line (2.15) may be drawn to determine system stability. Since £ is a
known function of K by (2.1&), points on the straight line correspond

to various values of K. Therefore, stability ranges may be determined as

0 <K< 1.24 stable
1.2 <K < 2.70 unstable
2.0 <K < T.30 stable
7.30 < K < 11.85 unstable

As K increases to higher values, the system stability continues to
alternate between stable and unstable behavicr.

Consider the specific case in which K = 1.68 . Therefore, { = 1.0
and § = 0.42, i.e.

¥+ 0.2% + (L.01 - 0.84 cos 2 t)x = O, (2.16)

and the system (2.16) is unstable according to Fig. 2.3. The system was
actually simulated on an analog computer, and the unstable solution
(Fig. 2.4) was verified. The choice of B = %b = 5.0 in (2.9) shows that
the Popov Criterion is satisfied by the above system. Therefore, the

Popov Criterion in its present form cannot be applied to systems contain-

ing a single time-varying element.
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Fig. 2.3 Determination of Stable Ranges for K in the System (2.4)-(2.8)
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Fig. 2.4 A Specific Exemple of Instability Obtained Via Analog
Simulation for the Damped Mathieu Equation in (2.16)




2.4 The Rozenvasser Criterion

Although Popov's result for stationary systems does not apply in
general to the time-varying case, Rozenvasser [29] has observed that the
inequality (1.16) is valid for the nonstationary system (2.1)-(2.3) if
the scalar P is set equal to gzero. This corollary to Popov'é ﬁork-will
be referred to as the Rozenvasser Criterion

Z + Re G(Ju) >0 (2.17)
which must hold for all real w. The Rozenvasser Criterion is importaht
because at the outset of this investigation it was the only generally
applicable frequency domain criterion for feedback systems having a
single time-varying element. Thus, all criteria developed in the follow-
ing chapters will be compared with the Rozenvasser Criterion.

The inequality (2.17) has a simple geometrical interpretation in
the G(jw) plane (Fig. 2.5). A vertical straight line tangent to the
curve atrits left extremity intersects the negative real axis at -l/K.

This yields the largest value of K.

Example:
Consider the third order system described by
1%
X, =X
2 3 (2.18)
kg = -6xl - 1x, - 6x5 + f(o, t)
0 = -X

where f(o, t) satisfies (2.3). In the notation of (2.1)-(2.2), the

values of A, b, and ¢ may be written as




ImG(jw)

G(jw) plane

——

Re G(jw)

S
l

Fig. 2.5 Geometrical Interpretation of the Rozenvasser Criterion (2.17)

-
|
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0 1 0 0 -1
A=| 0 0 1 ; b= 0 ; ¢ = 0 (2.19)
-6 -11 -6 1 0 .

Using (2.19) in (1.14), one can easily obtain the open-loop transfer
function of the lineaf plant as

G(s) = 1
+

~

e 3 (2.20)

is + 1)(s
Using the geometricsal intefpretation of (2.17) in Fig. 2.5, one finds
that the Rozenvasser Criterion yields a maximum K of 27.95. The result
obtained by applying the Popov Criterion to a stationary nonlinear
system having the same lineer plant is 60.0, which is the same as the
Routh-Burwitz sector for the corresponding linear time-invariant system.

The Popov inequality (1.16) required a corresponding B of 6/11 to

obtain the widest sector.

2.5 Sumary and State of the Art

Rozenvasser appears to have been the first to have considered the
problem of a single nonstationary element in an otherwise linear time-
invariant system. Although his result is quite restrictive, it does

form the foundation upon which the results of the following chapters are

built. Recently, Sandberg [30] used functional analysis to obtain results

similar to (2.17).
Rozenvasser's work applies to feedback systems having a time-varying
nonlinearity. However, a number of stability criteria have been

developed recently for linear systems containing a time-varying gain.
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periocdically varying gain and results by Narendra and Goldwyn [32] and
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Brockett and Forys [35] obtained by using Liapunov theory for systems
having a general time-varying gain.

The next chapter deals with the problem of including the scalar
constant B in the stability inequality. An improved criterion is
developed by placing an additional restriction upon the rate at which

the nonlinearity may vary with time.




*
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CHAPTER 3

AN IMPROVED CRITERION

3.1 Introduction

Sufficient conditions for global asymptotic stability will be
obtained in this chapter for feedback systems containing & single time-
varying nonlinear element whose input-output characteristic lies within
a finite sector (Fig. 2.2). An improved frequency domain criterion
which retains the scalar constant B (as in the Popov Criterion) will
be developed. This new criterion utilizes information relatedvto the
rate at which the nonlinear characteristic varies with time. Finally,
it will be shown that this new result represents a considerable improve-
ment over the Rozenvasser Criterion.

The problem has been stated fully in Section 2.2, but certain
pertinent equations are rewritten here for convenience.

X =Ax + b f£(o, t) (2.1)

ag

T
e x (2.2)
The sector requirement may be formally expressed as .

0 <o (o, t)<Ko2 for 0 £ 0

(2.3)
£(0, t) =0 ,
for all t > 0. Moreover, the linearized system obtained by replacing
(o, t) by Ko in {2.1) is assumed to be asymptotically stable, where

0 < K1 < K.




The problem is to determine sufficient conditions which must be
satisfied by the linear plant in order for the system (2.1)-(2.3) to be

globally asymptotically stable.

3.2 Development of an Improved Criterion for the Nonstationary Problem

| Consider as a tentative Liapunovofunction

n
v(x, o, t) = <Px + B&/ £(z, t) dz (3.1)
0

T . T. .
where P = P~ > 0, i.e., xPx >0 for all x # O and B is a scalar
constant. FEvaluating its time derivative along the trajectories of the
system (2.1)-(2.3), one obtains

vix, o, t) = XTLATP + PAlx + (ebTP + BCTA)X (o, t)

o]
,\
+ Bch fg(c, t) + B¥/ éﬁ&%t-zl dz (3.2)
0
One may constrain V(x, g, t) to be of the form
Wk, 0, 8) = - [ - /7 £(0, ©)F - 1o, t) [0 - ¥ £(o, )]
- B (@ o +ag (o, t) + f2(c t) -
l 2 2 5 2
o]
N
I el (5.3)
0

by equating the coefficients of corresponding terms in (3.2) and (3.3).

ATP + PA = - qq- - BalccT (3.4)

2bTP + BcTA =2./y qT - (1 + 6a2) et (3.5)
T

y =% - Bag - Bcb (3.6)

In (3.4)-(3.5) q is a real n-dimensional column vector. The necessary

and sufficient condition for the existence of this real n-vector is
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given by the following lemma which is analogous to Kalman's Lemma [1k]
discussed in Section 1.6.
Lemma:

If there exist & real non-negative mmber y, a real number £,

three real n-vectors b, m, and r, and a stable matrix A such that (a4, b)

is completely controllable, then a real n-vector q satisfying the

equations
ATP + PA = -qu - zrrT (3.7)

oPb +m = 2 /7 q (3.8)

exists if and only if the inequality
y - Re[m (juI - A) L b]- 2] rT(,ij a1y |2 >0 (3.9)
holds for all real w. 7
The proof of the above lemma is given in Appendix I.
If one sets m- = BcTA + (1 + ﬁae)cT, £ =fa,, and T = c, then the
lemma implies the existence of a real n-vector q such that (3.4)-(3.6)
are satisfied, provided (3.9) holds for all real w.

Iet the inequality

[¢)
of(z, t 2 2
B[ ——-%%——ldzgﬁ [alo +ay0 (o, t) +a3f (o, t)]

hold for all o and all t > O, where &

(3.10)

17 % 3

Utilizing the lemma, (2.3),and (3.10), one may therefore prove that

\.i(x, o, t) is negative semidefinite. Furthermore, one may observe that

W, (x) < V(x, o, £) < W,(x) (3.11)

and ¢, are scalar constants.
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x?Px (3.12)

xT[P + BK ccT] x (5-13)

W, (x)

W, (x)

Therefore, the asymptotic stability of A, the complete observability of
(A, cT), equations (3.11)-(3.13), and the assumption% that every
linearized system ‘
k = Ax + bK, c'x (3.14)
where '
0 <k <K (3.15)
is asymptotically stable implies that V(x, g, t) is positive definite.
The conditions for Liapunov's theorem for stability (Section 1.4) have
been satisfied.
letting s = jw, one may use (1.14)-(1.15) in the stability
inequality (3.9) to yield the following frequency domain relationship

for stability.

% - Bos + Re [(1+ Bay, + 3uB)A(30)]
- gy | o(ge) | % 20 (.16)
which must hold for all real w. The schematic disgram given in Fig. 7
2,1 for the system (2.1)-(2.3) utilized vector-matrix notation. An
equlvalent representation in terms of the plant transfer function is
shown in Figure 3.1.

Although the result in (3.16) is a sufficient condition for the
stability of (2.1)-(2.3), one would like to be able to guarantee global
asymptotic stability. If time did not appear explicitly in V(x, g, t)
and V(x, o, t), then one could use the following argument to prove
global asymptotic stability, where f(o) replaces f(o, t). The asymp-

totic stability of A guarantees that V £ O on any trajectory of the

*
This assumption is needed to allow the possibility of negative values

“of B in (3.1) and in the resulting theorem.
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f(o,t)

G(s)

Fig. 3.1 An Equivalent Transfer Function Representation of
the System Shown in Vector-Matrix Form in Fig. 2.1
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system since V = 0 implies that o = % (o), which violates (2.3) unless
o = 0. If one sets ¢ = £(g) = O in (2.1), then the fact that A is
asymptotically stable implies that the limit, as t - o, of x(t) is zero.
Thus, for the stationary case, the fact that V is positive définite and
V is negative semi-definite and not a trajectory of the system is suffi-
cient to prove global asymptotic stability by Liapunov's theorems.

However, this is not a valid proof for time-varying systems.
laSalle [30] has proposed the following system to illustrate that a
negative semi-definite V is not sufficient to guarentee asymptotic
stability for time-varying systems.

X =x, (3.17)

. t
ky = =%, - (2 +e )x2 (3.18)

Choosing V = %(xl2 + x22), one has ﬁ =-(2 + et)x2 < 0, which equals
zero only when‘x2 is zero. The only solution on X, = 0 is X, =X, = 0.
However, xl(t) =1+ e-'t is a solution and the system is not asymptoti-
cally stable even though % is negative semi~-definite. Therefore, V must
be negative definite to prove asymptotic stability.

A slight modification must be made to guarantee asymptotic stability
in the present problem. A negative definite v may be obtained by con-
straining ﬁ in a different way. One may achieve the desired result by
constraining V as

W(x, 0, 8) = - [ax - V7 2o, t)F - (o, t) [s - § (o, t)]

-B B1102 + a0 (o, t) + ay fz(o, t) -

o n
f Q_(%%_t_)_ dz ] -Zpi (diTx)2 (3.19)
0 i=1l




where pl, Py v+, P, BTE arbitrarily small positive constants and

2

17 d2, ey dn are arbitrary linearly independent n-vectors. The

resulting frequency domain inequality is

d

% - Boy + Re [(1+ B, + 38)6(39] - o | 6(3u) |

n
T

-Lpi | diT (juI - A)'l b |2 >0 (3.20)
=1

which must hold for all real w. The new term becomes negligible in a

practical application because pl, p -+, P, maYy each be chosen

2’ 7
arbitrarily smell. It is shown in Appendix II that an equivalent state-
ment is to replace K in (3.16) by K , Where K = Kmax appears in the
criterion but global asymptotic stability is guaranteed in the sector
(2.3) dependent upon K. The above results may be expressed in the
form of a theorem [3k4].
Theoremn:

If there exist real numbers B, K __, al, 02, and a3 such that

a) the inequality (3.16)

1

- pa, + Rel[(1 + B, + JuB)a(3u)] - Bay | 6(3w) | % > 0

3

max

holds for all real w,

b) the inequality (3.10)

g
6f Bfgztz t! az < 8 [alcz +a20 f(O’, t) +a3 fz(c; t)]
0

holds for all o and all t > O,
c) the linearized system (3.14) is asymptotically stable for all
K, in the interval (0, K),
then the system (2.1)-(2.3) is globally asymptotically stable for all

K = Kmax - €, where € is an arbitrarily small positive. constant.
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Let condition (a) of the theorem be designated as the Improved
Criterion and condition (b) as the Integral Constraint. Consider the

following special subcases of the Improved Criterion.

Subcase I: oy £0 a, = az = 0. (3.21)
Subcase II: a, £0 @ = oy =0 (3.22)
Subcase III: o £0 , a, =a, = 0. (3.23)

In applying the theorem, the Integral Constraint is first used to
determine the smallest values of al, az, or 05 for the particular
subcase. Then the Improved Criterion is used with B being varied to
find the largest K.

One will observe that when B = 0, the Improved Criterion becomes
identical to the Rozenvasser Criterion (2017), When B # 0 gives the
best sector for any one of the three subcases above, then there is an
improvement over Rozenvasser's result, i.e., the largest value of K
which can be obtained by using the Improved Criterion is greater than

the largest value which can be obtained by using (2,17) alone.

3.3 Comparison with Previous Criteria

let us consider the system discussed in Section 2.4 whose plant

equations are given by

kl =X,
X =X
2 > (2.18)
k3 = - 6x1 - 11x, - 6x3 + (o, t)
o = Xy

where the function f(o, t) satisfies (2.3). The open-loop transfer

function of the plant may be obtained by using (1.1k).

1
6(s) = (s +1)(s + 2)(s + 3) (2.20)
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Using (2.20) in (3.16), one obtains the results shown in Figures
3.2, 3.3, and 3.4 for Subcases I, II, and III, respectively. In each

case, B = O occurs for sufficiently large values of & and o,

17 @) 3

and the Rozenvasser sector is obtained. When either « s Or a, is

17 % 3
equal to zero, then K = 60,0, which is the best result that can be

obtained for this system with a stationary nonlinearity by using the

Popov Criterion. The latter result also happens to be the Routh-Burwitz

sector for this particular system (2.20).
Now consider a particular form of the function f(o, t):
£(o, t) = g(t) n(o)o (3.24)
where g(t) and h(o) satisfy the inequalities:
0<g(t) <l for all t>0 (3.25)
In(o) | <K for all o (3.26)
Furthermore,.for the purpose of this example, let:

g(t) = (at + b)e Pt

(t >0) (3.27)
vhere a, b, and p are non-negative constants.

A curve of g(t) versus time is shown in Figure 3.5. The time
function g(t) corresponds to the instantaneous voltage across the
capacitor in the critical case of the natural response of & three-
element RIC parallel circuit. p is determined by the element values,
while a and b are determined by initial conditions in the circuit.

The conditions which must be imposed upon a, b, and p, according

to (3.25) and (3.27) are

0<b<1 (3.28)
*¥ a - bp

t ;———ap >0 (3.29)

gt) =1 (3.30)
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Routh -Hurwitz Sector for
the linearized system

60— —— == e e e

80
1 40

Rozenvasser Sector

2 /
o 0 N
b
€ 20
X

(o) 04 08 1.2 1.6 20
17| 3 al/Kmox

Fig. 3.2 Use of Subcase I on the System Described by (2.18)

Routh - Hurwitz Sector for

the "linearized" system
60 ' Y

KH'IO! » lOOB —

o | ] 1 |

o] 0.4 0.8 1.2 16 20
n. 3 a‘ Lo
Fig. 3.3 Use of Subcase II on the System Described by (2.18)
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Rou!.h- Humiiz“ Sector for
60 the linearized system

Kmag ’ HOOB S

o 04 08 1.2 1.6 20

7)33 a, Kmux e g

Fig. 3.4 Use of SBubcase III on the System Described by (2.18)

/ a-bp t —

ap
Fig. 3.5 A Typical Curve of the Function Given by (3.27)
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For this particular time-varying nonlinearity, one may determine the
integral which appears on the left side of the Integral Constraint for

each of the three subcases.

c U
n n -

6\/ Bfgzé t) dz = B\/ [(a - bp) - aptle pt h(o) odo
0 0

o
<B(a - bp - apt)e ™™t 5%— (3.31)

Referring to Figure 3.5, one can see that the maximum positive slope of
g(t) occurs at t = 0. In the closed interval [O, t*], the slope of
g(t) is still positive, but g(t) is greater than g(0). In the interval
(t%, + o), the slope of g(t) is always negative and g(t) is positive.
The significance of these observations is that if the following inequal-
ities, which correspond to the Integral Constraint for each subcase and

utilize (3.31) hold for t = O, then they are true for all t > O.

(o}
2
B\/ﬁéiigé—zl dz < B(a - bp - apt)e_pt §%_ s &2102 (3.32)
0 2
B8(a - bp - apt)e Pt 5%— = pa, of(, t) (3.33)
2
B(a - bp - apt)e Pt 5%- s Pay (o, t) (3.34)

Equations (3.32)-(3.34) may be simplified to give (at t = 0):

K(a - bp

Q) === (3.35)
_a - bp
% 7% (3.36)
a - bp
o, =23=Dbp (3.37)
> ox?

where al, a2, and @, have been chosen as the smallest values which

3
satisfy (3.32)-(3.34) when B is positive.




Define:
!
h =X
max
My, =9
nj = Kﬁa£z3
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(3.38)

(3.39)

(3.140)

There are definite choices of a, b, and p in the present example

for which Subcase I is best, and other choices of a, b, and p for which

II is best. Two

Case 1.

Subcase

I
11
IIY

Therefore, Subcase I gives the best

Case 2.

Therefore, Subcase II gives the best results for Case 2.

By teking K = K __, one may show from (3.35)-(3.40) that:

a
b
Py
t

ton

0

of these cases are

K
max

39. 41

35.00

27.95

1. 5142
0. 8000
0.8927
0. 5918

K
max
39.41
ll'sn l"?
2. }5

n o= 0. 400
T, = 1.000
T = 2.500

Corresponding B

W o= 0. 400
n2 = 0.500
"3 = 0.625

Corresponding B

given below.

0. 4382
0. 41686
0. 0000

results for Case 1.

0. 4382
0. 5549
0. 4068
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b =1, /n, (3.11)

o=y (3.42)

Equations (3.28) and (3.41) require that N, <1, for this example.
This information, together with (3.42) and the fact that the curves of
Kmax versus n2 and Kmax versus nB in Figures 3.3 and 3.4, respectively,
are identical for all of the points calculated numerically, means that
for the particular plant (2.20) and the specific form of f(o, t) given
by (5.2&)—(5.27), Subcase I1II can never give a larger Kmax than Subcase
II. However, this does not rule out the possibility that III may indeed
be better than II for other cases.

One may use the procedure described in Appendix I to calculate the

n-vector q in (3.3) and the n by n matrix P in (3.1). As an example,

the values of q and P for Subcase I in both cases given above are

0. 8803 8.4691  3.909%3 0.6L02
q = {1.48401] ; P = 3.9093 2.3351  0.4555
0. 9036 0.6402  0.4555  0.143%9

which means both V(x, o, t) and V(x, o, t) are fully determined for the

particular values of Kmax and B which were obtained.

3.4 Conclusions

Sufficient conditions for the stability of feedback systems with a
single time-varying nonlinear element contained in a finite sector have
been given by Rozenvasser. The results reported in this chapter take

advantage of more information which might be available about ghe nonlin-

earity by placing an upper bound upon a certain integral, Bkl‘affz% t! dz,

which occurs in the expression for V(x, t). If this additional infor-

mation is known, then a frequency domain criterion which often gives
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better results than the Rozenvasser Criterion may be developed.

If the only information available about the nonlinearity is that
it lies in a finite sector, then the Improved Criterion developed in
this chapter cannot give a better result than the Rozenvasser inequality.
However, if in addition one knows that f(o, t) is governed by (3.24)-
(3.27) and that %ﬁ < v (vhere y is a constant) for all t >0, then
Subcaée I may often be used to obtain a better séctor than that obtain-
able by Rozenvasser. Moreover, if still more information about g(t)
and its slope in certain intervals are known, then the two remaininé
subcases may also be useful. In general, any of the three subcases
may be used only if the particular @ corresponding to that subcase can
be found. This does not restrict f(o, t) in every case to the form
given by (3.24)-(3.27).

An example was given in which Subcase I yielded a better sector
than either Subcase II or III. A second example showed that Subcase II
can sometimes give a better result for certain nonlinearities than
either of the other two subcases. No example has yet been found in which
Subcase III gives the best results of the three subcases, but it is
conjectured that such an éxample may indeed exist.

Although the particuler example in Section 3.3 illustrated only
three special subcases of the Improved Criterion, this restriction is
certainly not necessary. Allowing al, 02, and a3 t0 be nonzero simul-
taneously may yield for some systems an even wider sector than can be

obtained by using any one of the three subcases.
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CHAPTER 4

A STABILITY CRITERION FOR FEEDBACK SYSTEMS
CONTAINING A SINGLE SINUSOIDAL GAIN

k.1 Introduction

Ag described in the preceding chapters, the recent trend in
stability investigations has been toward developing frequency domain
criteria which guarantee asymptotic stability for feedback systems
having a single nonlinear and/or time-varying element in an otherwise
linear system. The Popov Criterion, which applies to systems having
a single stationary nonlinearity, and the Improved Criterion of
Chapter 3 for time-varying systems represent important stability results
of this type. These criteria are, in general, independent of the order
of the system and require that the nonlinear characteristic remains in
a finite sector (O, K) for ail time. For stationary systems the value
of K from the Popov Criterion depends only upon the open-loop transfer
function of the linear plant, but for systems with a time-varying
element the Improved Criterion shows that K also depends upon the rate
at which the characteristic varies. In general, when more information
is available about the nonlinear time-varying element, a wider stability
sector should be obtained. The purpose of this chapter is to develop a
stability criterion for systems which contain an element about which a

substantial amount of information is known. Specifically, the element
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is linear and varies sinusoidally with time at a single constant

frequency.

4.2 Statement of the Problem

Consider an unforced linear feedback system containing a single

sinusoidal gain in the loop (Fig. 4.1).

k = Ax + g(th (b 1)
o = ch (A.E)
g(t) =5 [1+ N sin (ut +0)] (4.3)

where x is an n-vector which represents the state of the system, A ié
an asymptotically stable n by n constant matrix, b and ¢ are n-vectors,
and ¢ is the input to the time-varying element whose variation is
described by (k.3).

The scalar N in (L.3) is a non-negative constant which does not

exceed unity. Bounds on g(t) may be obtained from (4.3) as

(1-) < g(t) < 5 (141) (b.4)

o] b

for all t > 0, which indicates that g(t) lies within a finite range which
has a lower 1limit of zero only for N = 1.

The problem is to determine sufficient conditions which must be
satisfied by the linear plant in order for the system (4.1)-(4.3) to be

asymptotically stable.

4.3 Derivation of the Sinusoidal Criterion

A Liapunov function consisting of a quadratic term plus an integral
term has dominated the work in previous chapters. Attempting to be more

general, one may consider the following as a tentative Liapunov function.
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?0. o(t) ,

G(s)

Fig. 4.1 Block Diagram of the Sinusoidally Varying Linear

System (4.1)-(k.3)
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V(x, t) = x'Px + x'P x sin (wt + ¢) + x'P x cos (wt +9)
s (o] [o] O ()4-5)

Evaluating its time derivative along the trajectories of the system
(4.1)-(4.3), one obtains
V(x, t) = x'[ATP + PA +g (PbeT + cbP)Ix
+ X AP +PA-wP +5 (Poel + cblP)
s 5 c 2
+§ (Psbc + chPs)]x sin (thv_r o)
+ xT[ATPc +PA + w P +-}2S (PcbcT + chPc)]x‘cos (wot + ¢)
+ xT[K—eN- (PcbcT + chPc)]x sin (wot + ¢) cos (wot + 0)

+ X’I'[_K;_W (PsbcT + chPs)]x sin® (wot + 9) (4.6)

Constrain V(x, t) to be of the form
Vix, t) = -[qTx + qux sin (wot +0) + chx cos (wot + ¢)]2

2

-—(de)2 [1-5 sin (wot +¢) -« sine(wot + 0)

- Baw  cos (wot + 6)
-8 sm(wot + ¢) cos (wot + 0)

2
- &, cos (wot +4¢)] (4.7)

2
scalar constants which add to the generality of (4.7). By equating

where g, Qs 90 and d are real n-vectors and %, Q, B, a;, and a, are

the coefficients of corresponding terms in (4.6) and (4.7), one obtains

ATP + PA +g— (PbcT + chP) = - qu - ad’ (4.8)
AP +PA-wP + 5 (Ppet + b'P) + & (P bet + cbP )
s s oc 2 2 s s
T T T
=-9qq; -499 + 5 dd (£.9)

T X T T T T T '
AP, +PA+wP + 2(Pcbc + cb Pc) = -qq, - q.@ + Baw dd (4.10)
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KN, . T T T T '
E{Pcbc + chPc) =-q4a, -9q9; *+ a,dd (4.11)
KN T T T 2..T
> (Psbc + cb Ps) =-q 9, +0a°dd (4.12)
T T \
0=-qa, + a2dd (%.13)

Equations (4.8)-(4.13) will be utilized to obtain a single matrix equa-
tion and a sinéle vector equation from which the frequency domain
inequality follows directly. From (4.13), one finds

9, = V3, 4 (. 11)

Post-multiplying and pre-multiplying (h,lQ) by an arbitrary n-~vector y,

one may write

7B (et )Y = - (a3 + aP(ay)° (4.15)
or
kv (o7P y)(c'y) = - (qs'l‘y)2 + P (aTy)? (.16)
If one sets éTy = 0, then
o (@)P - () =0 (4.17)
or
(ady - a.Ty)(ea"y + . Ty) = 0 (4.18)

Therefore, either c¢ is proportional to (ad - qs) or to (@d + qs), i.e.,
either ‘

ad - q = k.c (%.19)
or

ad + q = ke (4. 20)

where ka and kb are proportionality constants.

Performing the post-multiplication and pre-multiplication of (4.11)
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by y and regrouping terms, one may write

KN(bTPcy)(cTy) = -2(quy)(chy) + al(ley)2 (4.21)

Substituting (4.14%) into (4.21) and setting cTy = 0, one obtains
(a'y) (e,d - 2 Va, qS]Ty =0 (k.22)
Therefore, either the n-vectors ¢ and d must be linearly dependent or
c is proportional to (ald -2 /;; qs), i.e., either
d=kc (k.23)

or

ad - 2/a, q = k;c (4. 24)

where kc and kd are proportionality constants. When (h.23) is placed
in (4.19), the result is

q, = (ok, -k )c (k. 25)

Substituting (4.14), (4.23), and (4.25) in (4.11) and (4.12), one obtains

2 a:ch2
Pb = [= (ka - akc) |/a2 k, + Je (4. 26)
, .. , ]
PDb == (2 k, - ka)c (%.27)

In summarizing the foregoing, one should observe that the net effect of
(4.11)-(4.13) is that the vectors 4, q , q,, Pb, and P b are each pro-
portionél to the n-vector c. Of the two proportionality constants,

ka and kc’ one may be selected arbitrarily. Let

k, = /:-llg (4.28)

be the arbitrary choice. One will observe that the use of (4.20) instead

the same result as
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above, except one or both of the two different arbitrary constants would
appear in a different position in the resulting equations.

The effect of (4.10) will be considered next. Because of (k4.1k4)
and (M,QB), q must be proportional to some linear combination of c aﬁd
ATc unless q, is zero. One cannot obtain a frequency domain inequality
when q_ £ 0 because in such a case one would obtain from (4.8)-(4.9) a
frequency domain equality which would not be useful in the stébilit&
investigation. Therefore, tﬁe very nature of (4.10) demands that q, be
zero. From (4.14), this means that a, must also be zero.

Since both Ps and Pc are symmetric, equations (4.26)-(4.27) imply

P, =a_ cet (4.29)
P =a_ cel (1. 30)
However, an inspection of (4.10) when q, equals zero shows that
a,, = 0 (4.31)
Therefore, from (4.26)

al' =0 (4. 32)
Using (4.23) and (%.29) in (4.10), one finds
2
woa =Bw ak (4.33)

vhere k  is given by (4.28). Thus,

_ Bk
a =5 (k. 34)
and
P = %% cer (k.35)

T ,——'_|
k, = /K-,i—"- i% \/% - BN cTb (4.36)




Therefore

K , .
qs =—2- ’% - BN CTb (ed ()'!"37)

The result of placing the foregoing in (4.9) is
B T.._ /2 S
NPb +Pb+SATc=- /2 pN b q + 2 (4.38)

P-P/N (4.39)
q-q/N (4.%0)

one may write (4.38) in the form
Po + (— -

2:2 m)c +£ATC =-2 /—- - BN cTb q (4.h41)

Using

o
]

at
]

=

Equations (4.8), (4.9), and (4.12) yield

2
ATE-‘+I-’A=—<-1§T—(1+%-G—

nz) —ll% cet (k. 42)

The six formidable equations (4.8)-(4.13) have been reduced to
(4.41)-(4.42) to which the lemma of Appendix I may be applied. The
resulfing fréquency domain inequality is

L @ - c) + 2 [ - 251 Re Gju)

v £ o
2

+% [Re jw G(jw) + ch] - (1 +%-gu-§ —h% | 6(Jw) 12
(4.43)
Simplifying, one has |

2+ R [(1- -i% + 30 BY) 6(3u)]
2

_(l+%—§-2-)§2-2-|(}(jw)]220 (. 4h)
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which must hold for all real w, some real scalar constant B, some real
positive scalar ¢, and some real non-negative scalar N, where 0<N<I.
The expression for V(x, t) in (4.7) is negative semi-definite only
for certain values of the scalars Q, B’>“b’ and 8. The relationships
which must exist between these scalars in order for V(x, t) to be
negative semi-definite will now be determined. Using (h.52), the result

= 0, and (4.37), one may write

&2
V(ix, t) = - [qTx + %’ /%'— BN ¢b o sin (wot + ¢)]2- m(t)a2
(4. 45)
where
n(t) = % (1 -8 sin (0t +0) - o sing(wot +0)
- paw_ cos (wot +9¢)) (b 46)

The function m(t) in (4.46) must be non-negative for V(x, t) to be
negative semi-definite. ‘
Lema:

The function m(t) given by (4.46) is non-negative for all t > O if
and only if there exists some real scalar constant © in the interval

(0, n/2) such that

o< 1 - &(sin 6 + ;os 0 wt ) (5.47)
1l + cos €
_ S
Bwo = cos © [2a + 5—535—5] (4.48)

vwhere & is a real positive scalar constant in (4. 47)-(4.48), a and w are
real positive scalar constants, and B is a real scalar constant. If the
scalar & is negative, then the scalar constant © must belong to the inter-

val (%"— , 2n) in (4.47)-(4.48). If ® is zero, then the following
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relationships must hold.
Bw
o + (—20)2 <1 for a > /1/2 (4.49)
apw <1 for a < % (%.50)

Proof of lemma:

Observe that m{t) is both periocdic and continuous. Therefore, let
* .
t be some value of t at which

d_E.(.El =0 ()_,_ 51)

dt . *

Then the inequality
*
n(t ) >0 (4.52)
is both necessary and sufficient for m(t) to be non-negative for all

t > 0.

¥*
Setting the first derivative of m{t) at t = t equal to zero, one has

*
dm(t ) Ko,

* * *
[-8 cos(ubt + ¢) - e sin(ubt + ¢) cos(ubt + ¢)

dt T
+ Bu o sin(ubt* +¢)]=0 (4. 53)
To simplify_notation, let
0= wot* + ¢ (4. 54)

Using (4.54) and solving (4.52) and (4.53) simultaneously yields
(4.47)~(4.48) when & is non-zero. For the case in which & equals zero,
(4.53) becomes

| (sin 0)(Bua - 20° cos ©) = 0 (k. 55)
Therefore, either ‘

sin 6 = 0 {(4.56)
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or

Puy

cos O = B ()4'- 57)

If (4. 57) is true, then the application of (4.52) yields (4.49) for

o 2:; . However, if (4.56) is true, then (4.50) is obtained from

2
(4.52). This result is valid for o <‘% . A family of curves showing
permissible values of @ and Bwo for various values of & is shown in
Fig. 4.2.

All of the conditions developed in this section can now be
brought together in the form of a theorem for asymptotic stability.
Theorem:

The system (4.1)-(4.3) is asymptotically stable% if there exist
numbers o > 0, B, &, N (where 0 <N < 1), and K > O such that

a) Kax K+ € (4.58)

where € is an arbitrarily small real positive scalar constant,

b) the inequality (4.44) with Kmax replacing K

Lire [(1- 2+ 508 a(su))

5
5 o\ max 2
max .
-(1+g-5)=lew) [T >0
N° La

holds for all real w, some real scalar constant 8, some
real positive scalar &, and some real non-negative scalar
N, where O <N <1,

¢) there exists some real scalar constant © in the interval

(0, n/2) such that (4.47)-(4.48)

o < 1 - 8(sin © + cos © cot ©
- 2
1+ cos ©

*
The technique of Section 3.2 and Appendix II has been utilized to
“make V(x, t) negative definite.
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Fig. 4.2 A Family of Curves of a Versus Pw_ for Various Values
of & such that m(t) in (4.46) 1is Ron-Negative
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_ o)
ﬁub = cos © [oox + oo Q]

hold for & > O and the equations (L4.49)-(k4.50)

5 Bw 5 : .
o + (52 <1 for a > /1/2

aﬁwo <1 for « <\/172

hold when 5 = 0, and
d) the stationary system (3.14) is asymptotically stable for
all Kl in the interval (0, K).

The stability criterion resulting from the above theorem is quite
general. The result is valid for any frequency of sinusoidal variation.
As the frequency approaches zero, ¢ and N approach unity and the Popov
sector is obtained. Moreover, as the frequency approaches infinity,

B in (4.49) must be chosen to be zero. Figure 4.3 shows a diagram of
the sector obtained from the criterion, which shall subsequently be

referred to as the Sinusoidal Criterion.

4.4 Relationship with Previous Criteria

The Rozenvasser Criterion is a special case of (h.hh) for the
class of systems under consideration and may be obtained by setting
a=1,8=0,B=0, and N = 1.

By choosing V(x, t) as in (3.1) and letting f(o, t) = g(t)o, where

g(t) is & time varying gain, one may constrain V(x, t) in the form

Y, 0) = - Lo - fR- b a(s)ol? - a(e)® 1 - B
+Bage) 2 (4.59)

to guarantee asymptotic stability for systems containing a single time-
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varying gain g(t) if both

g aglt) o) n - 5%—1] (k. 60)

dat
holds for all £t > O and (1.16) holds for all real w. This result, which
was established very early dufing this thesis investigation, is equiva-
lent to a more recent result by Brockett and Forys [32]. For & = 0, the
Sinusoidal Criterion of this chapter yields the same result as-(1.16)
and (4.60) when applied to the system (4.1)-(4.3). However, when & # O
gives the best sector in (4.L44), then there is an improvement over the
above result.

The Sinusoidal Criterion may be applied directly by choosing N = 1
and then varying ¢ and & or B and & to find the largest K. However, one
may also utilize other techniques to obtain a graphical interpretation.
One will observe that the Popov inequality (1.16) is obtained by choosing
5 =0 and ¢ = N. The value of N will be in general less than unity.
Thus, a graphical interpretation in the form of a modified frequency
response (Fig. 1.1) may be used to find the widest sector in Fig. k. 3.
The new criterion gives a sector whose lower limit is non-zero when N % 1.
To compare this result with criteria which guarantee stability in a
sector (0, K), one may use a "pole-shifting” technique to rearrange
(4.1)-(4.3) such that the lower limit for a new gain h(t) defined below
is zero [15). This shifting is only for the purpose of comparison and
does not affect the result of the theorem.

Define

h(t) = %? 1+ sin(wot + ¢)] (4.61)




Therefore,

h(t)

o

where

Al =

Example

Consider the

equatlons.

g(t)

G(s)

T AN R G G =) N S0 N G &8 S an G0 am R e e

= g(t) - £ (1-1)

The new system equations become

X = Alx + b n(t)e

T
cx

A +§ (1-n) bel

With this new formulation h(t) belongs to the range (0, KN), and

variation does not exceed KN.

when 8 = O and a = N.

system described by the following set of differential

2

3

-2.8345 x, - x, - 6x3 + g(t)o
..xl

K .
=3 [1 + N sin (wot + 0)]

The open-loop transfer function of the linear plant is

1
55 + 6s2 + 11s + 2.8345

(4.62)

(4.63)
(4.64)

(4.65)

asymptotic stability is guaranteed if the peak-to-peak sinusoildal

An exsmple will be presented to illustrate the new criterion

(L. 66)

(4.67)

(4.68)

(4.69)

Using the modified frequency response described in Fig. 1.1, one




finds that the maximum value of K which satisfies (1.16) is 63.16 with
a corresponding B of O.545.

Let the value of w_ in (4.68) be 1.60 for this example. One may
then use (4.49), where N replaces a, to find that N equals 0.8998,
Therefore, the-value of KN obtained by using the largest possible K in
(1.16) is 56.83.

Using this value of KN, one may write the system equations in the
form of (4.72)-(4.65). The resulting plant transfer function is

1 1

G = =
(s) 53 + 652 +1ls + 6 (s +1)(s +2)(s +3) (2.20)
and the nevw time-varying gain h(t) becomes
h(t) = 5%2 [ + sin (1.6t + ¢)] (4. 70)

The reason for selecting the somewhat awkward values in (4.69) was
to arrive eventually at the transfer function in (2.20), which was the
basis of an example in Section 3.3. This example was examined by using
the Improved Criterion, which had been developed for feedback systems
containing a single time-varying nonlinear element. The only additional
information available was an upper bound on an integral involving the
time rate of change of the nonlinear characteristic. The maximum gain
obtained by using Subcase I of the Improved Criterion was only 39.41,
compared to 56.83 by using the new criterion. Thus the new criterion
based on a linear system having a single sinusoidal gain has yielded a
much better result for this particular case than a previous criterion
developed for feedback systems containing a single time-varying nonlinear

element.




Returning to the original problem described by (k4.66)-(4.69), one
may verify that the maximum value of KN does not occur at that value
of B for which K is maximum (Fig. 4.4). If the Popov line in Fig. 1.1
is tangent to the curve at & slightly lower frequency w = 3.04, compared
to w = 3.31 for meximum K, then the corresponding lower value of P yields
a larger value of 0.921 for N (compared with 0.8998 before). The net
result is that the maximum value of KN is 57.62 with a corresponding B
of 0.L484.

The next curve (Fig. 4.5) shows the maximum gain as a function of
the frequency W, of the sinusoidal variation. This curve indicates thsat
larger gains are allowed for lower frequencies according to the
Sinusoidal Criterion.

Choosing @ = N and 5 = O enables one to utilize the graphical
interpretation in Fig. 1.1. However, a pole-shifting technique must
later be applied to obtain a sector whose lower limit is zero. This
indirect procedure is unnecessary. If N is chosen to be unity, then
one may vary @ to obtain the same result as before. This eliminates
the pole-shifting and the need for finding a new G(s).

Suppose one has a system composed of the plant in (2.20) and a
sinusoidal gain h(t) described by (4.61) where N = 1. Then by choosing
@ =0.921, B = 0.484, and & = O, one may use (4.4%) directly to
guarantee asymptotic stability in the range (O, 57.6é).

Let Gl(jm) be the plant transfer function in the formulation in
which (4.60) applies and a wedge sector is obtained. ILet G,(jw) be
the plént transfer function when the lower limit of the>sinusoidal gain

is zero, i.e., as in (4.61). Then the relationship between Gl(jw)
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and Ge(jm) is
6, (3u)

1+ % (1 - a) G (jw)

G, (Jw) = (4. 71)

and the two formulations of the problem lead to the same result.

4.5 Application of Criteria to the Damped Mathieu Equation

A counter-example using the demped Mathieu equation was presented
in Section 2.3 to show that Popov's Criterion needs modification for
time-varying systems. The particular equation has a single sinusoidal
gain and thus falls into the class of problems to which the criterion
developed in this chapter applies. This problem is particularly
interesting because the exact stability boundaries (Fig. 2.3) are
recorded in the literature [3, 27, 28]. The Rozenvasser Criterion
will first be applied and then the improvement offered by both the
Improved Criterion and the Sinusoidal Criterion will be demonstrated.
The differential equation is

X +2p% + [p + 28 sin (2t + %)Jx =0 (4. 72)

which may be rearranged as

6(s) = 5—= (2.8)
s + 2ps + 7

g(t) =I§( [1 + sin (2t + -321'-)] (4. 73)

The relationships between K, 7, p, 4, &, and { are

K =2(u - 7) (2.7)
wo=28 +7 (4. T4)
¢ - 2

H-p (2.13)
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Therefore,

(5. 75)

N

Vo)
il

v
!
iR Fix
+
~
{
ke

(4.76)

The problem is to determine curves in the (&, {) plane as 7y is
varied. The results obtained from the Rozenvasser Cfiterion, the
Improved Criterion, and the Sinusoidal Criterion will be compared.

In applying the Rozenvasser Criterion, one may first calculate

2

Re G(jw) = - U (4. 77)
’ (7 ~ &) + (200)°

Setting the derivative of Re G(jw) equal to zero, one finds the

Rozenvasser gain KR as a function of p and 7.
KR=l;p(\/'7'+p) (4. 78)

Combining (4.78) with (4.75)-(4.76), one obtains
2
6 =& (4. 79)
p

Consequently, if p = 0.1,
¢

which expresses { as a function of ¢ for the Rozenvasser Criterion.

100 ¢° (4. 80)

Moreover, for p = 0.1, the largest values of K that could be
obtained by the Improved Criterion (Subcase 1) and Sinusoidal Criterion
are tabulated in Table 4.1 and displayed in the form of curves shown in
Fig. 4.6. The region between the particular curve and the { axis is
the region of asymptotic stability for that criterion. Thus, the
Sinusoidal Criterion gives a larger region of asymptotic stability than

either the Rozenvaséer Criterion or the Improved Criterion for the
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Table 4.1 Application of the Rozenvasser Criterion, the Improved
Criterion, and the Sinusoidal Criterion to the System
Described by (2.8) and (4.78) as y is Varied and p is
Constant at 0.1. . :

Rozenvasser Criterion:
7 Xr ‘r tR
0.17 .204 0.26 .051
0.50 .323 0.66 .081
1.00 .40 1.21 .110
2.00 .606 2.28 .151
300 .73 335 .18

Improved Criterion:

4 K; By w S &1
0.17 0.204 0.0C 0.5C 0.26 -051
0.  0.323 0.00 G. 80 0.66 .082

1.00  0.458 0.97 1.08 l.22 .11k
2,00 0.846 3.40 1.45 2.31 .211
3,00 1.240 4,00 1.76 3,61 .310

Sinusoidal Criterion:

7  Kg Bs g 5 w Cs &g
0.17 0.235 .40 0.926 0.0 0.51 0.28 .059
0.50 0.430 .54 0.8k 0.0 0.8 0.7L .107
1.00 0.680 .60 0.800 0.0 1.14 1.33 .170
2.00 1.199 .64 0.768 0.0 1.58 2.59 .300
3.00 1.68 .66 0.752 0.0 1.9 384 .420

*
w is that value of w in the search for the largest KI or KS such that
the left hand side of (3.16) or (4.Lk), respectively, attains its

smallest value.

—
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system described by (4.72), (4.73), and (2.8), when y is varied.

4L.6 Summary

Sufficient conditions were obtained in this chapter to guarantee
global asymptotic stability for linear feedback systems containing a
single sinusoidal gain. The new result, known as the Sinusoidal
Criterion, represents a considerable improvement over both the Rozenvasser
Criterion and the Improved Criterion, which were developed for a class
of time-varying nonlinear systems.

The Rozenvasser Criterion, the Improved Criterion, and the
Sinusoidal Criterion were each applied to the dahped_Mathieu equation.
When several values of y were considered with p held constant at 0.1,
one could obtain curves in the (5, §) plane for each criterion. These
curves illustrated that the Sinusoidél Criterion yielded a larger range
of asymptotic stebility than either of the other.two criteria. In
addition, Subcase I of the Improved Criterion yielded é better result

than the Rozenvasser Criterion.
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CHAPTER 5

CONCLUSIORS

5.1 Evaluations of Results

The recent trend in stability theory has been toward developing
criteria which apply to a wide class of systems rather than being con-
cerned about methods which apply only to a particular system. For many
years the Second Method of Liapunov served as a tool for investigating
the stability of particular equations. Usually these systems were of
low order, and the techniques developed almost always depended greatly
upon this fact.

The work of Popov [12, 13] in the early years of this decade is of
special interest in the study of the problems of stability theory.
Popov used functional analysis to develop a stability criterion for
feedback systems containing a single time-invariant nonlinear element
in a finite sector of its input-output plane. His stability criterion
was significant, not only because it was independent of the order of
the system, but also because the permissible value of K depended only
upon the transfer function of the linear plant.

The Popov result was soon derived through the use of Liapunov
theory by Kalman [14]. As a part of his work, Kalman presented an

ffective procedure by which one could construct the Liapunov function

to guarantee global asymptotic stability. Rozenvasser [29] observed
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that a special case of the Popov Criterion (B = 0) was applicablie to
systems in which the nonlinearity varied with time.

Upon the works of these investigators are based the results of
this thesis. It was first shown via a counter-example that Popov's
Criterion must be modified (for B # 0) to apply to the case of a
time-varying nonlinearity. Once this.need was established, the Improved
Criterion was developed in Chapter 3 to guarantee global asymptotic
stability for feedback systems having a single time-varying nonlinear
element confined to a finite sector of its input-output plane. This
criterion represents a considerable improvement over the Rozenvasser
Criterion. However, although the Rozenvasser Criterion requires only
that the continuous nonlinearity remains in the finite sector for all
time, the Improved Criterion also requires additional information
related to the rate at which the nonlinear characteristic varies with
time,

The utilization of more knowledge about the separate element is
fundamental to this thesis. There is developed in Chapter 4 a stability
criterion for feedback systems containing a single element about which
a substantiasl emount of information is known. Specifically, the element
is linear and varies sinusoidally with time., This new result, known as
the Sinusoidal Criterion, yields a stability sector which is much larger
than could be obtained by either the Improved Criterion or the Roznevasser
Criterion when applied to this special case.

The stability criteria of this thesis represent a considerable
improvement over previous results. In every case the criteria are

independent of the order of the system and yield a sector which depends
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upon the transfer function of the linear plant and additional information

about the separate element. The criteria gusrantee global asymptotic

stability for feedback systems containing a single time-varying element.

5.2 Proposed Extension of the Sinusoidel Criterion

The ideas of this and the following sections are presented as

ot

suggestions for further investigation. One will recall that the
Rozenvasser Criterion was developed by using a Liapunov fumction con-
sisting of only a quedratic term, i.e.,

v(x) = £ Px (5.1)

The Sinusoidal Criterion of Chapter 4 was obtained by choosing

v(x, t) = xT[P +P_ sin(wot +6) + P, cos(wot +¢))x (4.5)

and constraining V(x, t) to be of the form

Vix, t) = - [qTx + qux sin (wot +0) + chx cos (wot + ¢)]2

- (de) [1-5 sin (wot + ¢) - a°

sin”(wt + ¢)
- Baw cos (wot + ¢)
- a) sin (wot + ¢) cos (wot + ¢)

- 2, ‘cose (wot +¢)] . (4. 7)
The criterion resulting from (4%.5)-(4.7) yielded a much better result
than the Rozenvasser Criterion for feedback systems having a single
sinusoidal gain (4.1)-(4.3).
The proposed exfension is to consider a more general Liapunov
function of the form ‘N N
T AN A\
V(x, t) =x" [P +LPsk sin (kuot + ¢) +Z_,Pcn cos (nwot +- ¢) x
k=1 n=1 (5.2)



_ €8 -
and to constrain V(x, t) as
N N
Vv(x, t) = -[qTx +Y_‘ qT x sin (kw t + ¢) +V_1qT x cos (nwt + ¢)]2
? ZJ sk o 24 cn o
- k=1 Al :

e BB
- x) [11--2_l ZJ a, sin (kubt + ¢) cos (nubt +¢)]

k=0 n=0
i (5.3)

While the Rozenvasser Criterion and the Sinusoidal Criterion used a -
V-function from a truncated Fourier Series, the proposed extension
permits one to include terms in both V and V which are higher than the
fundamental frequency. A more generai stability criterion should be

the result.

5.3 Extension to Systems Containing Several Time-Varying Nonlinearities

The second area for further investigation is based on earlier
results by Ibréhim and Rekasius [38], who developed criteria for feedback
systems with more than one time-invariant nonlinear element. In par-
ticular, one should be able to use the techniques of Chapter 3 to develop
a new criterion which applies when the nonlinear elements vary with time.

The suggested Liapunov function is
m oi
TP r‘
v(x, t) = x Px +Z_. sif fi(zi, t) dz; (5.4)

i=1 0
which is analogous to a Liapunov function used in [38] to obtain a
criterion to insure global asymptotic stability for single loop systems
with several nonlinear elements. For the proposed investigation, the

nonlinear characteristics should each be confined to a finite sector.
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The rates at which these nonlinear characteristics vary with time will
undoubtedly play an important role.

The above two ideas appear to be fruitful areas for further
investigation in stability theory for feedback systems having time-

varying elements.
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APPENDIX I

PROOF OF THE MODIFIED KAIMAN 1EMMA

A proof for the lemma in Section 3.2 is provided in this appendix.
As a part of the sufficiency proof, a procedure due to Kalman [14] is
outlined for the construction of a Liapunov function.
Necessity:
Adding the quantity (-juP + juP) to the left hand side of (3.7)
and rearranging terms, one obtains »
(-jul - AT)P + P(5ul - A) = qu + grrt (1.1)
Pre-multiplying (I.1) by bT( juI - A ) and post-multiplying by ’
(jwI - A) L , one has
bP(jul - A) b + br(=jul - A7) 1Pb = bT(-jul - AT) qqT(suT - A) M
+ b (-5ul - AT)™T prrT (oI - &)1 (1.2)
From (3.8), one has

Pb =7 q - %'m (1.3)

bP = 3 q - % (1.%)

Using (I.3) and (I.4), one may write (I.2) as

fr a" (gt - A - 20 (gl - A) b+ bT(-gur - AT)H 7 g
- 3T gr - AT = 6 egr - AT goT (e - A

(g - AN g (g - a)h (L.5)
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Adding 7 to both sides of (I.5), then rearranging terms and factoring,
one obtains
T . - T,. -
B (-gul - AT Y - 7 T la (3ur - &) - /7 ] =
-2 T(-gur - AT) ] [T (5uL - A) 7o)
- L n(ur - ) - S0 (-gut - AT 4y (1.6)
Since the quantity on the left hand side of (I.6) is real and non-
negative, then it follows that inequality (3.9) A
T - -
y - Re [m™ (juI - A) lb] -2 er(JwI - A) n) |2 >0
must hold for all real w. | |

Thus the necessity proof is completed. The sufficiency proof

is obtained in a manner analogous to the proof by Kalman in [14].

Sufficiency:
The sufficiency proof consists of showing that (3.9) implies that

(3.7)-(3.8) must hold where A, b, and c¢ define the system (2.1)-(2.2).

Let the syétem be described by its phase variables, i.e., let

"0 1 0 0 o
0
0 0 c)
A=) ;b= 31 }se=]:
0 0 1 8 c s
-8 -8 -8
| o n-2 n-1 | i 1 h i Ch-1 |

The open-loop transfer function of the linear plant is given by (l.lh).

Inequality (3.9) may be written

. 2
7-RemT(ij-A)-lb-zer(ij-A)-lb|2= ,%{gﬁ}l >0
(1. 7)




|
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Factorization of (I.7) yields
. 2 /
lM‘szl M{jw M{-jw (
= -{J—} . —-E—J-;- 1.8)
. 2 N R{-
! N(Jw? l Jw JW . , ]

where the poles and zeros of %—2—3‘—;’-} are in the left half plane. From

(1.8), one forms

s - 7 343

If the coefficients of H(jw), arranged in the order of ascending powers,

are identified with the n-~vector q, then

%8—3 = g (5ul - A) Mo (1.10)

The vector g so defined satisfies (3.7) and (3.8). Therefore, (3.9)
implies the equations (3.7)-(3.8) , which completes the sufficiency proof.
Moreover, the n-vector q can be effectively computed by using the above
procedure. Note that the asymptotic stability of A in (3.7) implies
that P is non-negative. For P to be positive definite, the'pair (A, cT)

should be completely observable.
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APPENDIX II
AN EQUIVALENCE PROOF FOR STABILITY INEQUALITIES

The purpose of this appendix is to show that the inequality (3.16)

- fag + Re [(1 + o, + 3uB)6(Jw)] - Ba | 6(5w) |2 >0

=R

max
is equivalent to the inequality (3.20)
1 . .
X - Py + Re [(1 +pa, + juB) G(Jju)]
&
. 2 T, . -1 2
- gay | G(ju) | -).e. la,7(Jer - A)" 0 |° >0
i=1
where

K=K - € (11.1)
max

To prove this equivalence, one must show that (3.16) implies (3.20) and,
in addition, that (3.20) implies (3.16). Let
o
€. = max [Lp ld.T(ij - A)—lb le] (11.2)
1 O<w i +
S i=] -
where Pys Pyy eoesy P, are arbitrarily small positive quantities.

Therefore, (3.20) implies (3.16) if

S S (11.3)

d
K~ 17K

or, simplifying,
(11. %)

K.=Km-elKK
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One may choose € in (II.1) such that

€=e KK (I1.5)

and, therefore, (3.20) implies (3.16).

Next, one ﬁust éhow that, given €, the values of pi and di may be
properly chosen. This means that (3.20) must follow from (3.16). The
value of ¢, is immediately known from (1I.5) when € has been spe'cvified.

Since the scalar constants Pys Pos eeey Py and the linearly independent

2

n-vectors 4., d2 sy e+s, G are all arbitrary, one may choose

1 n

=P, = eee =P (11.6)

p=pl 2 n

Therefore, one may select p and dl, d2, cesy dn such that
&
T, . - 21 _ _ £
np max [L]di(gwI-A)lbl j]—el--———KK
i=1

0w max
(11.7)

which shows that (3.16) implies (3.20).
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